Mixture-model-based signal denoising

نویسندگان

  • Allou Samé
  • Latifa Oukhellou
  • Etienne Côme
  • Patrice Aknin
چکیده

This paper proposes a new signal denoising methodology for dealing with asymmetrical noises. The adopted strategy is based on a regression model where the noise is supposed to be additive and distributed following a mixture of Gaussian densities. The parameters estimation is performed using a Generalized EM (GEM) algorithm. Experimental studies on simulated and real signals in the context of a diagnosis application in the railway domain reveal that the proposed approach performs better than the least-squares and wavelets methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

Image Denoising with a Mixture of Gaussian Distributions with Local Parameters in Wavelet Domain

The proposed model for noise-free data distribution play an important role for maximum a posteriori (MAP) estimator. Thus, in the wavelet based image denoising, it is necessary to select a proper model for distribution of wavelet coefficients. This paper presents a new image denoising algorithm based on the modeling of wavelet coefficients in each subband with a mixture of Gaussian probability ...

متن کامل

Image/video denoising based on a mixture of Laplace distributions with local parameters in multidimensional complex wavelet domain

Noise reduction in the wavelet domain can be expressed as an estimation problem in a Bayesian framework. So, the proposed distribution for the noise-free wavelet coefficients plays a key role in the performance of wavelet-based image/ video denoising. This paper presents a new image/video denoising algorithm based on the modeling of wavelet coefficients in each subband with a mixture of Laplace...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

A New Shearlet Framework for Image Denoising

Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. Data Analysis and Classification

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007